IIT Guwahati's AI model to predict knee osteoarthritis severity from X-rays

Published 10-07-2023, 07:05 pm
IIT Guwahati's AI model to predict knee osteoarthritis severity from X-rays

Guwahati, July 10 (IANS) Researchers from the Indian Institute of Technology (IIT) Guwahati have developed a Deep Learning (DL)-based framework that automatically assesses the knee osteoarthritis severity from X-ray images.The AI-based model, named OsteoHRNet, can be used to detect the severity level of the disease and assist medical practitioners remotely for a more accurate diagnosis.

Knee osteoarthritis is the most common musculoskeletal disorder in the world and has a prevalence of 28 per cent in India.

There is no possible cure for knee osteoarthritis except total joint replacement at an advanced stage hence an early diagnosis is essential for pain management and behavioural corrections.

MRI and CT scans provide a 3D image of the knee joints for effective diagnosis of knee osteoarthritis but their availability is limited and expensive.

For routine diagnosis X-Ray imaging is very effective and more economically feasible.

"Compared to others, our model can pinpoint the area which is medically most important to decide the severity level of knee osteoarthritis thus helping medical practitioners detect the disease accurately at an early stage," said Dr Palash Ghosh, Assistant Professor, Department of Mathematics, IIT Guwahati, in a statement.

The proposed approach is not a direct plug-and-play of popular deep models. The AI-based model uses an efficient Deep Convolutional Neural Network (CNN) that is, an algorithm from image recognition.

This model predicts knee osteoarthritis severity according to the World Health Organization (WHO) approved Kellgren and Lawrence (KL) grading scale that ranges from grade 0 (low severity) to 4 (high severity).

It is built upon one of the most recent deep models, called the high-resolution network (HRNet), to capture the multi-scale features of knee X-rays.

"Although simple, the proposed model may be a good starting point for analysing inexpensive radiographic modalities such as X-rays," said Prof. Arijit Sur, Department of Computer Science and Engineering, IIT Guwahati.

"Our group is currently focusing on how efficient Deep Learning based models can be designed so that we can work on inexpensive and easy to available modalities such as very low-resolution radiographic images or even photos taken from radiographic plates by a smartphone," Sur added.

The team is further working to reconfigure these models in such a way that they can be deployed in resource-constrained devices so that medical professionals can easily get an initial but accurate guess for the diagnosis.

This work has the potential to mitigate the severe shortage of skilled personnel in this field, especially in rural India.

The research has been accepted for publication in the journal Multimedia Tools and Applications.

--IANS

rvt/prw

Latest comments

Risk Disclosure: Trading in financial instruments and/or cryptocurrencies involves high risks including the risk of losing some, or all, of your investment amount, and may not be suitable for all investors. Prices of cryptocurrencies are extremely volatile and may be affected by external factors such as financial, regulatory or political events. Trading on margin increases the financial risks.
Before deciding to trade in financial instrument or cryptocurrencies you should be fully informed of the risks and costs associated with trading the financial markets, carefully consider your investment objectives, level of experience, and risk appetite, and seek professional advice where needed.
Fusion Media would like to remind you that the data contained in this website is not necessarily real-time nor accurate. The data and prices on the website are not necessarily provided by any market or exchange, but may be provided by market makers, and so prices may not be accurate and may differ from the actual price at any given market, meaning prices are indicative and not appropriate for trading purposes. Fusion Media and any provider of the data contained in this website will not accept liability for any loss or damage as a result of your trading, or your reliance on the information contained within this website.
It is prohibited to use, store, reproduce, display, modify, transmit or distribute the data contained in this website without the explicit prior written permission of Fusion Media and/or the data provider. All intellectual property rights are reserved by the providers and/or the exchange providing the data contained in this website.
Fusion Media may be compensated by the advertisers that appear on the website, based on your interaction with the advertisements or advertisers.
© 2007-2025 - Fusion Media Limited. All Rights Reserved.