IIT Kanpur research unlocks mysteries of Binary Fluid Dynamics

Published 24-01-2024, 05:03 pm
Updated 24-01-2024, 11:46 am
IIT Kanpur research unlocks mysteries of Binary Fluid Dynamics

Kanpur (UP), Jan 24 (IANS) Researchers from the Indian Institute of Technology Kanpur (IIT-K) have unveiled new insights into the process of relaxation of turbulent binary fluidsThe new study has been published in the journal 'Communications Physics' by Nature Group.

This significant research on binary fluids, referring to a mixture such as oil and water, challenges existing theories of turbulent relaxation and opens new avenues in the practical application of binary fluid dynamics in science, engineering and various industries.

According to an official release, upon vigorous stirring, a binary fluid becomes turbulent and form an intermediate phase with cell-like structures.

The current study, led by Prof. Supratik Banerjee, along with research scholars Nandita Pan and Arijit Halder from the Department of Physics, IIT Kanpur, explores the detailed process how such a binary fluid relaxes when the stirring is withdrawn.

This discovery by the IIT Kanpur team has profound implications for understanding and manipulating the properties of such fluids in industrial applications.

In particular, the research offers a quantitative analysis of how the bulk of each component fluid and their interface in a binary mixture relax back to a phase-separated state once the turbulence ceases.

Interestingly, the relaxed state of the bulk turns up to be categorically different than that of the interface region.

However, both relax through a universal pathway, namely the principle of vanishing nonlinear transfers (PVNLT) proposed by the same authors very recently.

Furthermore, this relaxation process in binary fluids, as per the findings of the study, significantly differs from that in single-fluid systems. This distinction can be attributed to the conservation of an additional quantity called the 'scalar energy', which is pivotal in understanding this relaxation process.

Prof. Supratik Banerjee, Department of Physics at IIT Kanpur, said, “The findings of our research hold immense potential for applications in industries such as food processing, pharmaceuticals, and cosmetics, where binary emulsions like mayonnaise, antacid emulsions, shampoos, and body creams are manufactured. The findings provide essential insights into the manufacturing and preservation processes. This can lead to more efficient production methods, reducing waste and costs. By understanding the unique relaxation properties of binary fluids, companies can optimise the stability and consistency of their products, ensuring longer shelf life and improved quality.”

He added, “Additionally, in pharmaceuticals, where the stability of emulsions is crucial for the efficacy of certain medications, this research can lead to enhanced drug formulations, ultimately improving patient outcomes.”

--IANS

amita/uk

Latest comments

Risk Disclosure: Trading in financial instruments and/or cryptocurrencies involves high risks including the risk of losing some, or all, of your investment amount, and may not be suitable for all investors. Prices of cryptocurrencies are extremely volatile and may be affected by external factors such as financial, regulatory or political events. Trading on margin increases the financial risks.
Before deciding to trade in financial instrument or cryptocurrencies you should be fully informed of the risks and costs associated with trading the financial markets, carefully consider your investment objectives, level of experience, and risk appetite, and seek professional advice where needed.
Fusion Media would like to remind you that the data contained in this website is not necessarily real-time nor accurate. The data and prices on the website are not necessarily provided by any market or exchange, but may be provided by market makers, and so prices may not be accurate and may differ from the actual price at any given market, meaning prices are indicative and not appropriate for trading purposes. Fusion Media and any provider of the data contained in this website will not accept liability for any loss or damage as a result of your trading, or your reliance on the information contained within this website.
It is prohibited to use, store, reproduce, display, modify, transmit or distribute the data contained in this website without the explicit prior written permission of Fusion Media and/or the data provider. All intellectual property rights are reserved by the providers and/or the exchange providing the data contained in this website.
Fusion Media may be compensated by the advertisers that appear on the website, based on your interaction with the advertisements or advertisers.
© 2007-2025 - Fusion Media Limited. All Rights Reserved.